
GSoC - Fun & Profit Combined - The
Nmap/Ncrack paradigm

ithilgore

sock-raw.org

26 Nov 2009

Google What?

I Annual program held & sponsored by Google

I For students only

I Open Source projects only

I Work from ˜

I Mentor - Student approach

Some Numbers

I 180 Open Source organizations

I 1000 Students

I $4500 stipends

I 3-4 months, summer period

I >14k lines of code! (personal number)

Selection Criteria

I A *good* application form

I Previous experience with the project

I A feature-rich CV always helps

I General open source involvement

I Passion

How does it work?

1. Write the application form. If you get selected then...

2. get acquainted with mentor, developers and codebase during
the community bonding period.

3. Brainstorm. Start coding. Report on your status. Discuss
problems with others.

4. ?????

5. PROFIT (& fun)

The Nmap paradigm

I Weekly reports on project status and goals achieved

I Weekly meetings with mentor (Fyodor) on IM

I nmap-dev@seclists.org as the main communication channel

I Feedback from both users and developers.

The goal: Ncrack

Ncrack is designed to be a fast and flexible network
authentication cracker. You can point it at a service (ssh,
msrpc, http, imap, pop3, SNMP, telnet, ftp, etc.) and it
will make repeated authentication attempts. The goal is,
of course, to find working credentials by brute force. It is
a very handy tool to have during pen-tests, as
many/most users still choose weak passwords.

http://seclists.org/nmap-dev/2009/q2/238

RFC on Ncrack, A new network authentication cracker

http://seclists.org/nmap-dev/2009/q2/238

Why?

I Weak passwords more common than actual exploits.
I Competitors (THC-Hydra, Medusa etc):

I are not very actively maintained
I some of them are way too old
I many limitations (e.g not good support for multiple

hosts/multiple ports)
I interfaces too restricted (nothing like Nmap which provides a

dozen ways of specifying IP addresses for example)
I no support for contemporary protocols like IPv6
I not portable to many platforms (i.e Windows)

I Becase we can.

Starting from scratch

1. Initial Draft
(http://sock-raw.org/nmap-ncrack/ncrack_draft.html)

2. Notes on underlying libraries (Nsock, Nbase)

3. Read through Nmap code to get ideas (ServiceScan)

4. Compiled first rough codebase with libs and all. Makefile Hell.

5. Experimented with Nsock and its API.

http://sock-raw.org/nmap-ncrack/ncrack_draft.html

Coding the first .text

I Command-line interface. A lot of discussion here.

I First parts of core engine - experimental stage.

I FTP module - something easy for starters.

I Experimenting against testbed servers.

Ncrack Architecture - Overview

Ncrack is based on a modularized architecture, where
each protocol/service corresponds to the equivalent
module that handles all the authentication steps.
Ncrack’s architecture is thus built in a way so that a
module is separated as much as possible from the more
low level details of timing and connection management
which are handled by the core engine.

http://sock-raw.org/nmap-ncrack/ncrack_engine.html

A brief overview of Ncrack’s architecture

http://sock-raw.org/nmap-ncrack/ncrack_engine.html

Ncrack Architecture - Main constituents

I Core Engine: Nsock event-driven API

I ServiceGroup: main object, services lists, general info

I Service: main class holding timing/statistical information, user
options associated with specific service and a pointer to Target

I Target: stripped Nmap class holding IP address and/or
hostname

I Connection: class describing current attack session

I module state machine: mechanism which describes the
authentication phase of each module - modules have their
own unique struct of info (void * technique)

Ncrack Architecture - Core Engine

The Ncrack brain (ncrack.cc):

I registers Nsock callback handlers and calls modules

I handles connection and authentication endings

I takes care of timing and adapts to dynamic conditions

I essentially is responsible for everything network related

What makes it fast?

Speed is gained through the ability to adapt to network conditions
and leverage of clever techniques in the application protocol layer.
Some of the speed factors:

I Nsock - provides a fast and optimized event-driven API

I opensshlib - custom library based on OpenSSH code and
providing low-level access to SSH handlers

I HTTP pipelining - (through HTTP persistent connections)
massive speedup

I Dynamic Timing engine - flexible adaptation to changing
network conditions (e.g lower amount of parallel probes when
something goes wrong)

What makes it better?

I Total control - from timing restrictions and network
aggressiveness to credential iteration scheme.

I Support for Nmap notation in host/service specification +
advanced extension for more complex scenarios.

I Target input from Nmap and automatic service parsing (-iX)

I Ability to save and resume a cracking session (--resume)

I Platform portability: Linux, Windows, Mac OS X, *BSD

I Ships in with high-quality username/password lists.

I Extensive documentation
(see http://nmap.org/ncrack/man.html)

http://nmap.org/ncrack/man.html

Ncrack options 1/2

Ncrack 0.01ALPHA (http://ncrack.org)

Usage: ncrack [Options] {target and service specification}

TARGET SPECIFICATION:

Can pass hostnames, IP addresses, networks, etc.

Ex: scanme.nmap.org, microsoft.com/24, 192.168.0.1; 10.0.0-255.1-254

-iX <inputfilename>: Input from Nmap’s -oX XML output format

-iN <inputfilename>: Input from Nmap’s -oN Normal output format

-iL <inputfilename>: Input from list of hosts/networks

--exclude <host1[,host2][,host3],...>: Exclude hosts/networks

--excludefile <exclude_file>: Exclude list from file

SERVICE SPECIFICATION:

Can pass target specific services in <service>://target (standard) notation or

using -p which will be applied to all hosts in non-standard notation.

Service arguments can be specified to be host-specific, type of service-specific

(-m) or global (-g). Ex: ssh://10.0.0.10,at=10,cl=30 -m ssh:at=50 -g cd=3000

Ex2: ncrack -p ssh,ftp:3500,25 10.0.0.10 scanme.nmap.org google.com:80,ssl

-p <service-list>: services will be applied to all non-standard notation hosts

-m <service>:<options>: options will be applied to all services of this type

-g <options>: options will be applied to every service globally

Misc options:

ssl: enable SSL over this service

path <name>: used in modules like HTTP (’=’ needs escaping if used)

TIMING AND PERFORMANCE:

Options which take <time> are in milliseconds, unless you append ’s’

(seconds), ’m’ (minutes), or ’h’ (hours) to the value (e.g. 30m).

Service-specific options:

cl (min connection limit): minimum number of concurrent parallel connections

CL (max connection limit): maximum number of concurrent parallel connections

at (authentication tries): authentication attempts per connection

Ncrack options 2/2

cd (connection delay): delay <time> between each connection initiation

cr (connection retries): caps number of service connection attempts

to (time-out): maximum cracking <time> for service, regardless of success so far

-T<0-5>: Set timing template (higher is faster)

--connection-limit <number>: threshold for total concurrent connections

AUTHENTICATION:

-U <filename>: username file

-P <filename>: password file

--user <username_list>: comma-separated username list

--pass <username_list>: comma-separated password list

--passwords-first: Iterate password list for each username. Default is opposite.

OUTPUT:

-oN/-oX <file>: Output scan in normal and XML format, respectively, to the given filename.

-oA <basename>: Output in the two major formats at once

-v: Increase verbosity level (use twice or more for greater effect)

-d[level]: Set or increase debugging level (Up to 10 is meaningful)

--nsock-trace <level>: Set nsock trace level (Valid range: 0 - 10)

--log-errors: Log errors/warnings to the normal-format output file

--append-output: Append to rather than clobber specified output files

MISC:

--resume <file>: continue previously saved session

-6: Enable IPv6 cracking

-sL or --list: only list hosts and services

--datadir <dirname>: Specify custom Ncrack data file location

-V: Print version number

-h: Print this help summary page.

Ncrack ASCII art!
~00000

00000000

,000$ 0$+~

$=0= .0+0

000 000

:000 0~0

0000. 0

00000 .

.000000

0?= +.,.

,?00.$000

00000~.:~0

.$+00~?~000

:00000.=0000

?00?00+=: ,0,

00000..0000~ 000000. $0

00..0~0?0::00,?0::?$0. 00 ~

.0. ,0?00000.0$,+,000.00 $00

0. 00.?00=00000~0+0:0000?0,~0?.

.0 +00 0+0000 0000=?~0000?00 00

.: .~~ .000=00000~00=000000+0.0~0$$.

00 , ?00.. 000~000000000000.:0.0:0~ 0$00.+

00.0 00 00?~000~000000000+00 + ~0000000000=$0000

$ 00 00. .00,000000000000$.00000. .0000+$+~00

0 00 .0 000000000?~0000000. 0. .0$000000+$0

0 0 0 000:$~0000=0.0000,$. 00 0000000000

0 00 ?.0000 $0 0 . .0000

. $?000. 0 0

0 +~?000

0. :000000?0 |=------=[Ncrack]=------=|

0000$?+00

00+0:~0$0+

.0$000?00

0?000000

.000~0

Demonstration time

Resources

http://ncrack.org OR http://nmap.org/ncrack

http://nmap.org/ncrack/man.html

svn co –username guest –password ”” svn://svn.insecure.org/ncrack

http://sock-raw.org

http://sock-raw.org/nmap-ncrack.html

http://sock-raw.org/nmap-ncrack/reports09.html

http://ncrack.org
http://nmap.org/ncrack
http://nmap.org/ncrack/man.html
http://sock-raw.org
http://sock-raw.org/nmap-ncrack.html
http://sock-raw.org/nmap-ncrack/reports09.html

Questions?

