Protection Mechanisms - A brief overview

ithilgore
sock-raw.org

16 Dec 2009

Index

o B~ e

Inline Reference Monitors (IRM)
Dynamic Information Flow Tracking
Software Fault Isolation (SFI)
Advanced Sandboxing - seccomp
Control Flow Integrity (CFI)

1. IRM

What is a Reference Monitor?

A way to observe execution and contain/trap a possible violation
of a previously defined security policy. Inline means it is placed
inside the monitored untrusted process.

» Must not be circumvented.

» Must have low overhead.

1. IRM --[Example]

Canary - Buffer overflow on Stack protection

2. Dynamic Information Flow Tracking (DIFT)

Use of hardware-implemented security tags to mark potentially
malicious data as spurious (usually data coming from 1/O channels
that can be manipulated by an attacker) and raising an exception
if they are used as an instruction or jump address.

» Protects against last step of attack -> executing attacker’s
code.

» Security Tag propagation mechanism -> [copy, comp, Ida, sta]
dependencies

» Efficient Tag Management -> multi-granularity — Page vector
mask: [per page secure, per quadword, per byte, all spurious]

2. DIFT --[Example]

I/O from fgets is marked as spurious. Data written to by fgets (i.e
buf) also marked as spurious. If saved return address is overwritten
(by overflowing buf) it will be marked as spurious as well.

int func(char *fname)

{
char buf [256];
FILE *src;

src = fopen(fname, "rt");
while(fgets(buf, 1044, src)) {

3

return O;

2. DIFT --[Pros/Cons |

Advantages:

1.

Effective against most attacks:
stack overflows, heap overflows, vudo/heap corruption, format
string attacks

Low memory space and performance overhead

Disadvantages

1.

Requires special processor and architecture for hardware
tagging support.

2. No actual implementation yet

3. Legitimate cases of spurious data (jump tables, dyn func ptrs)

-> requires additional binary inspection software algorithm to
mark bound-checked such data as safe

3. Software Fault Isolation (SFI)

A method of software sandboxing mainly directed for use in
modules-based applications. The process’ modules reside in the
same virtual space, yet are isolated from each other through
software segmentation.

>

>

use of segment register to define a fault domain (sandbox)

check jump or store instructions with run-time resolved target
addresses

requires additional code to be prepended to each of these
(binary rewriting)
dedicated hw registers to protect from skipping checks

communicate with trusted process through RPC (i.e shared
mem)

3. SFI --[Example]

Before a function finishes (ret) (pop moves the saved eip return

address into ebx)
---[Normal

pop %ebx
jmp *ebx

---[SFI applied

pop %ebx

mov %ebx, %ded_reg # use of dedicated register

cmp Jded_reg, seg_identifier # is addr inside fault domain?
jne trap # if not, trap

jmp *Yded_reg

3. SFI --[Pros/Cons]

Advantages:
1. Small overhead

2. Protects against some attacks

Disadvantages
1. Requires use of dedicated registers (not easy in architectures
with small set of registers e.g i386)
2. Concept is lacking in specifying what happens with

dynamically linked code (like libc). Is it considered to be
inside the fault domain? If yes, ret2libc attacks will work.

3. SFI --[SASI]

Security Automata SFI Implementation

A generalization of SFI to define certain security policies, rather
than just code flaw tampering protection. A formal language
(security automata) is used to write policies in abstract form e.g
app must not open more than 3 windows.

» It can't protect against advanced attacks without additional
help.

» Use of partial evaluation using static analysis to eliminate

unnecesarry checks (e.g "no division by 0" check only before
DIV)

4. Advanced Sandboxing - seccomp

Seccomp is a feature of the Linux kernel that is enabled in (most)
contemporary Linux distributions. It restricts a thread to a small
number of system calls:

read ()
write()
exit ()
sigreturn()

* ¥ ¥ ¥

If the thread calls any other system call, the entire process gets
terminated. A trusted helper thread is invoked to inspect and run
other allowed system calls on behalf of the sandboxed thread.

4. seccomp --[Syscall Interception |

Ideas

» Link against specially-built copy of glibc (too much
maintenance cost)

» Find all places where glibc makes system calls and redirect to
our wrapper function (preferred way)
Failure to rewrite all of them -> app termination

Syscall arguments are written to a socketpair() which are read by
the trusted thread.

4. seccomp --[Mem access races 1/2 |

TOCTTOU race condition

Syscall arguments deemed safe by trusted thread and just before
syscall execution they are changed to malicious ones by the
untrusted thread. Problem exists because of shared address space
between threads.

Solution:
Use of extended registers (e.g SSE) for local variables of trusted
thread (which should be coded in asm).

4. seccomp --[Mem access races 2/2 |

For syscalls like fork(2) which need to pass a ptregs struct *ptr
(residing in userspace) we need to invoke a separate trusted
process

Trusted thread - process communicate through shared memory
page.

A verified by the process data block (only accessible by trusted
code) holds the syscall parameters which are read by the thread to
finally execute the system call.

4. seccomp --[Considerations |

\{

A robust architecture is as important as bugless trusted code.

\{

Many attack vectors through race condition bugs and matters
of trust.

\4

Module/plugin architecture is very common and thus a target
for sandbox environments.

\4

Sandboxing will likely become a really sought-after research
field.

5. Control Flow Integrity (CFl)

A general mitigation technique with a security policy which
dictates that software execution must follow a path of a
Control-Flow Graph (CFG) determined ahead of time through
source-code or binary analysis and/or execution profiling.

» Use of labels (special bit patterns) to mark possible allowed
destinations for each control-flow transfer.

» Inserted checks ensure execution stays within CFG.

5. CFI --[Example 1/2]

Two destinations are equivalent when CFG contains edges to each
from the same set of sources.

sort2(): sort(): 1t():
ped
bool 1t(int x, int y) { g P ; Ly label 17
return x < y; E ‘ //,—”/
call sort” A | callZET RT]
__—fret23
e e~
bool gt(int x, int y) { label 55 v label 23 ¢
return x > y; § , ; N at():
N
call sort’ : ret 55 N Label:-17
L ~ §
’ 3 ! X \
sort2(int a[], int b[], int len) Tabel 554" ’
1{ ret 23
sort(a, len, 1t);

sort(b, len, gt);

ret ..

Figure 1: Example program fragment and an outline of its CFG and CFI instrumentation.

5. CFI --[Example 2/2]

Source Destination
Opcode bytes Instructions Opcode bytes Instructions
FF E1 jmp ecx ; computed jump 8B 44 24 04 mov eax, [esp+4] 3 dst
can be instrumented as (a):

81 39 78 56 34 12 cmp [ecx], 12345678 ; comp ID & dst 78 56 34 12 ; data 12345678h ; ID
75 13 jne error_label ; if 1= fail 8B 44 24 04 mov eax, [esp+4] ; dst
8D 49 04 lea ecx, [ecx+4] ; skip ID at dst
FF E1 jmp ecx 3 jump to dst

or, altematively, instrumented as (b):
B8 77 56 34 12 mov eax, 12345677h 5 load ID-1 3E OF 18 05 prefetchnta 3 label
40 inc eax ; add 1 for ID 78 56 34 12 [12345678h] H ID
39 41 04 cmp [ecx+4], eax ; compare w/dst 8B 44 24 04 mov eax, [espt+4] ; dst
75 13 jne error_label ; if !'= fail
FF E1 jmp ecx 5 jump to label

Figure 2: Example CFI instrumentations of a source x86 instruction and one of its destinations.

3. CFI --[Pros/Cons |

Advantages:
1. Effective against most types of attacks
2. (finally sth that) protects against the ret2libc technique

3. Small runtime overhead

Disadvantages
1. Requires binary recompilation.
2. Preparation (static analysis) time overhead.

3. Doesn’t protect against attacks that don't violate CFG
(malicious arguments to syscalls, incorrect argument-string
parsing etc)

References

1. MS Gleipnir
http://research.microsoft.com/en-us/projects/Gleipnir/

2. Control-Flow Integrity: Principles, Implementations, and Applications
http://research.microsoft.com/pubs/69217/ccs05-cfi.pdf

3. Efficient Software-Based Fault Isolation
http://www.stanford.edu/class/cs295/papers/wahbe93efficient.pdf

4. SASI Enforcement of Security Policies: A Retrospective
http://www.cs.cornell.edu/fbs/publications/sasiNSPW.ps

5. seccomp
http://code.google.com/p/seccompsandbox/wiki/overview

6. Secure Program Execution via Dynamic Information Flow Tracking
http://csg.csail.mit.edu/pubs/memos/Memo-467/memo-467 .pdf

7. Bypassing Stackguard and Stackshield
http://www.phrack.org/issues.html?issue=56&id=5

http://research.microsoft.com/en-us/projects/Gleipnir/
http://research.microsoft.com/pubs/69217/ccs05-cfi.pdf
http://www.stanford.edu/class/cs295/papers/wahbe93efficient.pdf
http://www.cs.cornell.edu/fbs/publications/sasiNSPW.ps
http://code.google.com/p/seccompsandbox/wiki/overview
http://csg.csail.mit.edu/pubs/memos/Memo-467/memo-467.pdf
http://www.phrack.org/issues.html?issue=56&id=5

Questions?

